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The three-dimensional reference interaction site model with the closure relation by Kovalenko and Hirata
(3D-RISM-KH) in combination with the density functional theory (DFT) method has been implemented in

the Amsterdam density functional (ADF) software package. The analytical first derivatives of the free energy
with respect to displacements of the solute nuclear coordinates have also been developed. This enables study
of chemical reactions, including reaction coordinates and transition state search, with the molecular solvation
described from the first principles. The method yields all of the features available by using other solvation
approaches, for instance infrared spectra of solvated molecules. To evaluate the accuracy of the present method,
test calculations have been carried out for a number of small molecules, including four glycine conformers,

a set of small organic compounds, and carbon nanotubes of various lengths in aqueous solution. Our predictions
for the solvation free energy agree well with other approaches as well as experiment. This new development
makes it possible to calculate at modest computational cost the electronic properties and molecular solvation

structure of a solute molecule in a given molecular liquid or mixture from the first principles.

1. Introduction complex biomolecules. However, the main disadvantage of
. o ) ) ) discrete models is that adequate description of solution requires
The importance of solvation in chemical and biological 5 gignificant number of solvent molecules. This results in high
processes can hardly be overestimated. Solvent effects on thet':omputational cost and slow convergence. An alternative
structure and functionality of solutes are not only important for approach is based on continuum self-consistent reaction field
understanding the mechanisms of many organic and biochemical, 5 qels5-11 Here the solvent is represented not by a collection
reactions but also crucial for molecular drug design. Progress o molecules but rather by a structureless continuous medium
in computer hardware and electronic structure methods hasyith the average properties of the real solvent. A central quantity
stimulated the development of solvent models. Advancementsig ihe “reaction field”, i.e., the electrostatic influence of the
in this direction has been especially impressive over the pastgoent on the electronic energy, structure, and properties of
few years. Many efforts have been devoted to incorporate \he golute molecule. These methods are significantly less
solvent effects into quantum chemical approaches in order t0 gyhensive computationally than explicit solvent treatments, but
accurately model chemical reactions in liquids. The Kehn  gych simplified models of solvent are often insufficient to

Sham density functional theory (KS-DFF)has become a  hqnerly represent the specific interactions between the solute
widely used model for electronic structure calculations due to 514 solvent molecules.

its simplicity and low computational cost. Recent improvements
of the exchange-correlation functionals based on the generalizeq n
gradient approximation (GGA) makes it possible to treat the
solute electrons sufficiently accurately. In combination with
solvent models, DFT allows one to calculate the potential energy
surfape (PES) for molecular systems and thus to study ChemicalThis “supermolecule” is immersed in a continuous dielectric
reactions. . ) ) . medium characterized by the macroscopic dielectric constant
Methods for including solvent effects are typically subdivided ¢ the solvent.

into two types: explicit and continuum solvent models. Explicit
(or discrete) method4 treat a large number of solvent molecules
together with the solute, generally at the same or comparable
level of accuracy. This approach is in principle the most realistic
and accurate model for studying the physical chemistry of
solvation, whether the solutes are simple organic molecules or

Because of the above difficulties, there is significant interest
developing more rapid and accurate hybrid methods. One
solution is to make use of the supermolecular appr&aélin

which the solvated system is modeled by a cluster of the solute
and a representative small number of explicit solvent molecules.

Another, theoretically consistent way to introduce a micro-
scopic description of solvation effects involves combination of
guantum chemical methods with statistical mechanical theory
of molecular solvation based on density distribution functions.
One promising approach in this direction is the reference
interaction site model (RISM) which yields the radial pair
correlation functions between atomic sites constituting the
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The first hybrid of the RISM integral equation theory with  of solute
electron structure theory is due to Tenno, Hirata, and Kato.
They combined the ab initio Hartreéock scheme with RISM f dr ng(r) =N, 4)
in a self-consistent field approach referred to as RISM-SCF.
This method makes it possible to determine in a self-consistentwe obtain the self-consistent KS equation modified due to the
manner the effect of organic as well as aqueous solvents on thepresence of solvefft?4
electronic structure of a variety of solute molecules. In addition, 1
Sato et &P formulated an analytical energy gradient method [__ , ] (r)=ey
for hybrid MCSCF-RISM calculations and applied it to the 2A U+ )+ olr) F vealr) wj(r) ejwj(r) ®)
study of the cistrans conformational equilibrium of 1,2-
difluoroethylene in aqueous solution.

Because RISM is based on the orientational reduction te site n(r')
site solute-solvent radially symmetric correlation functions, v(r) = f dr' — (6)
there is a loss of information about the three-dimensional (3D)

spatial organization (structure) of the solvent density around a e electron density distribution is determined by summation

macromolecular solute of complex shafiBesides the con- ey theN, lowest occupied eigenstates with allowance for their
vergence problems, this makes the conventionat-site RISM double occupancy by electrons with opposed spins

difficult to use in combination with the KS-DFT scheme which
requires spatial density profiles rather than radial -ssi¢e Ne
distribution functions. To circumvent this limitation, a gener- ng(r) = Z |1/J,~(f)|2 @)
alization of RISM theory to three-dimensional space (3D-RISM) =
has been proposed which yields the 3D correlations of molecular ) o ) o
sites for solvent molecules around a solute of arbitrary sHape. the exchange-correlation potential is the functional derivative
Thus, the 3D-RISM-KH approach is best suited and has been OEIn(n)]
coupled with the KS-DFT in a self-consistent field description V(1) = (8)
of the electronic structure of solvated macromolecules and xe ong(r)
interfaces??24

In this paper, we present the implementation of the 3D-RISM and the solvent potential is defined as
method in the Amsterdam density functional (ADF) progr&m.
This self-consistent KS-DFT/3D-RISM-KH method includes v ) = OAusan[ne(r){ £, (N}
also calculation of analytical energy gradients. The accuracy sol ong(r)
of the method is illustrated on a set of examples.

where the Hartree potential is

Ir —r'|

©)

To simplify the calculation obyu(r) in ADF, we use the fitted

2. Theory density

2.1. Kohn—Sham DFT in the Presence of SolventThe Ne
electronic structure of the solute is calculated from the self- nr)~YS c,ir) (10)
consistent KS-DFT equations modified to include the presence € ; a

of solvent. The total system of the solute and solvent has the

Helmholtz free energy defined as which after substitution in eq 6 yields the fitted potential. Here
fa is the set of the single-center Slater functions and the

AN, (N} = Esoud NeN] + Astonne(r) {0, (3 (1) coefficients c, are determined by least-squares fittA3g7

Together with using the locality propertiésthis allows one to

dramatically reduce the amount of calculations necessary for

evaluation of the potentials and matrix elements.

The total free energy is calculated as

whereEsquteiS the electronic energy of the solute consisting of
the standard componerita\usoy is the excess chemical potential
of solvation coming from the solutesolvent interaction and
solvent reorganization due to the presence of the sohdte),

is the electron density distribution, and(r) is the classical Ne 1 n(r)n(r’)
density distributions of interaction sitgs= 1, ...,s of the solvent A= Z e — _f dr dr’ e\' /lle L E ()] -
molecule. The solute energy is determined by the standard KS- c 47 2 r—r’ XC

DFT expression written in atomic units as

EsoluteIne(r)] = Ts[ne(r)] +

S 0,(1) () + Agop[ne(r) Lo, (N} —

n(r)n(r’) S dr v (r) n(r) (11)

r
f dr n(r)vi(r) +dr' Ir—r'| + Eldnn)] (2) 2.2. Three-Dimensional RISM Theory.The classical density

) o ) ] distributions of molecular solvent around a solute of arbitrary

whereT{ne(r)] is the kinetic energy of a noninteracting electron  shape are obtained by using the 3D-RISM integral equations.

gas in its ground state with density distributiogr), Exc[ne(r)] These equations can be derived from the six-dimensional,
is the exchange-correlation energy, anfr) comprises the  molecular OrnsteirZernike (0Z) equation 28 for the solute
external potential and the nuclear attractive potential. solvent correlation functions by averaging out their dependence
From the minimization of the free-energy functional (1) on the orientation of solvent molecules but holding the solute
orientation intac2?24 1t has the form
OAIN(r) {p, ()} 0 @)
ong(r) h,(r) = Co(r)* (@, (1) + pg Ny, (1)) (12)

subject to the normalization condition fdk valence electrons  wherehy(r) andc,(r) are respectively the 3D site total and direct
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correlation functions of solvent sii@ around the solutay,- HNG 1 ) 1
(r) = O(r — loy)/(47l4,?) is the intramolecular matrix of a solvent ~ Aw™ = PkTZf dr [=(h,(r))" —c,(r) — —(h,(r) c,(r)
molecule with site separatioms,, p, is the number density of 7 2 2 (15)
solvent siten, and “*” corresponds to convolution in the direct
space and summation over repeating site indices. The st
radial correlation functions of bulk wateln,, (r), are obtained
from the dielectrically consistent RISM theory (DRISM)
developed by Perkyns and Peffitivhich provides a consistent
description of the dielectric properties for ions in polar solvent. KH 1 5
Used as input to the 3D-RISM, eq 12 yields the dielectric &4 = PkTZf dr E(hy(r)) O(=h,(r)) -
properties of polar solvent around a solute of general shape at ¥
least at the level of a macroscopic dielectric constaitThe
3D site correlation functions are specified on a 3D linear grid
in a rectangular supercell, and the convolution in eq 12 is
handled by using the 3D fast Fourier transform (3D-FFT) where® in the Heaviside step function which puts the teditn
technique. For a (macro)molecular solute, the box size has toin effect in the regions of density depletion only.
be large enough to ensure decay of the short-range part of the Special considerations are required in order to apply the 3D-
3D site correlation functions at the supercell boundaries, whereasRISM approach to the case of nonzero net charge of the solute.
the long range electrostatic part of the correlations is separatedWithin the supercell technique, the Coulomb part of the
out and handled analyticalff:24 interaction potentiali(r) is synthesized on the super-cell grid
The solute-solvent 3D-RISM eq 12 must be complemented by the Ewald summation meth@@This distorts the long-range
with a closure relating the sitesite total and direct correlation ~ Coulomb asymptotics of the direct correlation functic(n).
functions. The approximations which appeared to be successfulFurthermore, the background compensating charge of the
and adequate for the description of the structure and thermo-supercell brings about a constant shift in the total correlation

equivalent to that derived by Singer and Chandler for the-site
site RISM/HNC equation® For the 3D-KH closure (14), the
analytical expression is somewhat differ@rt

1
c,(r) — E(hy(f) c,(r)| (16)

dynamics of various solutes in polar liquidare built in analogy
with the closures in theory of simple liquid$The 3D analogue

of the so-called hypernetted chain (HNC) closure to the 3D-
RISM eq 12 is constructed by assuming

9,(r) = exp(=pu,(r) + h,(r) — c,(r))

whereu,(r) is the 3D interaction potential between solvent site
o and the whole solutgd = 1/kgT is the inverse temperature
with the Boltzmann constard, andg,(r) = h,(r) + 1 is the

3D site distribution function of solvent sitearound the solute.
Beglov and Rou% have obtained the 3D-RISM/HNC equations,
eqgs 12 and 13, within the density functional method by reduction
of the generalized closure of Chandler, McCoy, and Singer for
nonuniform polyatomic systeni3.In the case of a very deep
well of the attractive potential between the solute and individual
solvent sites, the 3D-HNC closure (13) can become diver-
gent?234 This artifact is absent in the partial linearization of
the HNC closure proposed by Kovalenko and Hitat4 (KH
approximation)

x%,(r) = —pu,(r) + h,(r) —c,(r)

Equation 14 combines the exponential HNC approximation for
the regions of depletion of the distribution functigp(r) < 1,

the mean spherical approximation (MSA) for the regions of
enrichmentg,(r) > 1, with the function and its first derivative
continuous at the joint poirX(r) = 0. The 3D-KH approxima-
tion (14) enforces proper long-range asymptotics of the direct
correlation functionc,(r) in the same way as in the original

(13)

g,(r)

exp ,(r))  fory,(r) < 0} (14)

1+ fory,(r) fory,(r)>0

function h(r) which departs from unity at a distance from the
solute. The resulting error in the solvation chemical potential
calculated from expressions (15) or (16) can amount to several
tens of kcal/mol. To eliminate these artifacts of the supercell
technique, Kovalenko and Hir&f24 developed analytical
corrections which restore the proper nonperiodic asymptotics
of the 3D site total and direct correlation functions following
from the 3D-RISM integral equations and cancel out the error
in the solvation chemical potential for ions and ion pairs with
an accuracy of about 0.1 kcal/mol.

2.3. Effective Potentials and Analytical Gradients.The
classical effective potential energy of the solute acting on solvent
site yo is broken up into the short-range interactioﬁ’)(r)
between the solvent site and the whole solute and the electro-
static energy of the solvent site effective chagge the fields
of the solute nuclep™(r) = 5; Z/|r — R;| and electrong©)(r)

u,(r) = uSAr) + q,(@™ () + ¢(r))

This short-range part is represented by the sum of the612
Lennard-Jones potentials over the solute sites

G

wherer; = |r — Rj| is the separation between the solute nucleus
i and solvent sitey and oi, and ¢, are the LJ diameter and
energy parameters. The potential of valence electrons acting
on a single solvent sitep™(r), is calculated in the density
fitting procedure?®

The effective potential of solvent acting on the solute
electrons,vsoi(r), is the functional derivative of the excess

(17)

W) =y 4e, (18)

HNC and MSA closures. The MSA-type linearization prevents chemical potential of solvation with respect to the electron
the artifact of the distribution function diverging in the regions density distribution of the solute (9). In both the 3D-HNC and

with a large potential. This partial linearization somewhat 3D-KH forms of the excess chemical potential, egs 15 and 16,
reduces and widens high peaks of the distribution functions, this leads to the expressi#t4

whereas it much less affects the coordination numbers of the

solvation shells. OA ol .
The 3D-HNC approximation (13) leads to the excess chemical Vsonll) = = pi dr' h,(r) 2XXr —r'l) (19)
potential of solvation in the closed analytical fgAA* ong(r) v
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TABLE 1: Free Energies (kcal/mol) Predicted by the KS-DFT/3D-RISM-KH Theory for a Set of Small Molecules in Aqueous

Solution
AG AG AG
LDA GGA LDA GGA LDA GGA
Diatomic
N> 2.29 2.46 Gl 1.17 1.22 CO 2.34 2.40
HCI —0.63 —0.49 0y('3) 1.07 1.14 B 1.94 2.02
HF —3.98 —-3.91 FCI 1.83 1.91 GhIT) 1.01 1.23
OH- —116.65 -117.32 SH —79.11 —77.86 CS 0.77 0.84
CN~- —78.22 —76.15 NO —53.67 —51.02 OcCrt —83.90 —82.11
Triatomic
HCN —2.14 —2.03 CS 2.98 3.11 HO —6.14 —6.08
FNO —0.98 —0.89 CQ 151 1.68 NO 2.04 2.15
Oz 3.32 3.41 CINO 0.65 0.77 SO 0.68 0.77
FCN —0.01 0.14 CICN —1.55 —1.46 CINS —-1.15 -1.02
NO,~ —74.99 —74.15 COS 2.95 3.07 P —1.10 —-1.12
HCC —78.76 —78.52 PH~ —82.58 —82.03 NQ* —51.88 —51.23
N3~ —72.44 —71.12 NH~ —112.31 —110.45 HOO —98.75 —97.06
Tetratomic
HCCH —0.56 —0.40 CH~ —89.38 —88.12 NCk 3.54 3.67
FOOFR 241 2.56 HCNO —1.20 —1.10 NH; —3.99 —3.84
PCk 2.19 2.45 HOOH —7.72 —7.34 HCCF 2.36 2.45
PR 1.38 1.53 HCHO -2.12 —2.02 FOOP 1.24 1.41
HCCCI 0.39 0.49 NE 3.16 3.24 SOF 0.82 0.97
HOCN —11.84 —11.09 cod 2.08 231 PH —-0.14 0.12
COR 2.28 241 HNCO —1.80 —1.56 HOOH —8.48 —8.21
CO2~ —210.61 —211.04 HCOO —79.53 —78.25 CHT' —56.10 —56.03
NOs~ —69.65 —68.42 HSt —59.53 —59.44 HO* —85.25 —85.01
Pentatomic
CH, 1.14 1.28 POF 1.75 1.91 CHFCI —5.56 —5.21
H2CNH —3.83 —3.64 CHR 1.03 1.25 PSE 3.57 3.63
CHzN32 0.96 1.02 HCOOH —-3.84 —3.69 Ch 3.19 3.25
NOFR; 3.28 3.39 CHCO 1.16 1.27 HCOOHM —-9.71 —9.45
CHRCI —2.19 —1.67 CHCI 1.96 2.17 CHF, 2.06 2.48
PSC} 2.06 2.34 CHBr 8.49 8.55 CEClI 3.49 3.88
SO 3.04 3.31 CHBr; 8.35 8.66 cd 2.83 2.99
CHClg 2.65 2.81 CHCI, —2.72 —2.34 CHF —0.07 0.64
SO.LCl, 2.84 3.05 CFG 1.87 2.02 CECl; 3.52 3.77
CH:O~ —86.44 —85.14 HPQ@ s —9.86 —9.54 POCY —0.95 —0.62
HPG;e —9.95 —9.03 CHCN-~ —76.91 —75.74 NH* —68.32 —68.04
HCOs™s —79.76 —77.95 HCQ e —77.0 —75.12 PH* —57.96 —57.11
CHsS™ —81.42 —82.12 Clo~ —63.97 —63.11 HCOH" —58.47 —57.10
where /#Y|r — r'|) is the contribution of sitey into the v
pseudogotential of a solvent molecule acting on an external OAuse1, = KTp Zf dr hy(r)éhy(r)G)( hy(r))
electron which is given by the variational derivative of the v 1
class_|cal site potential with respect to the valence electron (5Cy(l’) _ —6(hy(r)cy(r))
density? 2
oy ou(r) = pvz Jdrg,(r) ouy(r) (22)
S —rh=—2 (20) ;
on(r")

Similar to Kovalenko and Hirat&2* we have the following
variation of the classical potential between the solute and solvent

sitey:
ou,(r) ,
(5I’l,:/(r'))6nN(r )]

ou (r)—fd [( (e)(( ))) on®(ry +

Notice that the potential (19) signifies the mean field ap-
proximation which follows essentially from the use of the
solvation free energy in the form (15) or (16).

The analytical first derivative with respect to the nuclear
coordinatesk is obtained by differentiation of the free energy
expression (1)

dAIn(r).{p, (N} _ = [dr LYIr — r'Piony(r’) + on®(r)] (23)
dR Substituting eq 23 into eq 22 and using(r) = Y; go(r — R;))
AEsouid Ne(r)] | d (Apgondne(r) {0, (1)}]) gives the solvation contribution to the free energy gradients

R dR (21)

U
d(A;usolv y ( ) n(e)
where the former term has the same structure as in the case gas gr dr f dr gy(r/ oR. ' solv(r} R
phase. The latter term is derived from the excess chemical
potential in the form (15) or (16). Its variation can be written Wsondr)

aP2.24 qi or r=R (24)
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Calculation of the expression (24) does not require much TABLE 2: Solvation Free Energy (kcal/mol) Predicted by
computational effort. The second term in the square brackets isthe KS-DFT-LDA/3D-RISM-KH Theory vs Experiment

calculated together with the gradients of the exchange-correla- obj. AGe® AG
tion potentiaf” and the rest is calculated in the 3D-RISM Diatomic
procedure. Notice that the first term in the square brackets N, 2.3 2.29
contributes little to the gradients because large values of the  CO 2.2 2.34
derivatives of the short-range potentigi’(r) around the core HF —5.6 —3.98
are su_ppr(_assed by the distribution functm/r) exponentially 'C")ﬁl, :if& _1_1%.%35
decaying in that region. CN- 75 —78.22

We emphasize that the formula (24) differs from the analytical SH- -76° —79.11
free energy derivative following from the 1D-RISM schéfhe Triatomic
by the absence of the term representing the change in the H,0 —6.34—4.4 —6.14
solute-solvent correlations with the intramolecular distribution HCN -3.z -2.14
functions (intermolecular matrix). HCC™ e —78.76

Notice that the 3D-RISM-KH solvation method can be ESZ, :égcl __1?2 gi
similarly combined in a self-consistent field approach with any Noi— —73 7499
multireference electronic structure theory. Sato é¢ ploneered N3~ —74 —72.44
such a combination of 3D-RISM-KH and ab initio CASSCF PH,~ —67 —82.58
method. Tetratomic

NH3 —4P —4.F —3.99
3. Applications HOOH® —-8.7 —7.72
HCCH 0.0 —0.56

To illustrate the capability of our combination of the 3D- HCHO -1.7 -2.12
RISM-KH theory with KS-DFT, we present here preliminary H:O0* —104] -102P 105 —85.25
results of the benchmark calculations for a set of simple ~ NOs —66° —69.65
molecules and organic compounds, taken primarily from ref 39. Pentatomic
For the results presented below, the DZP basis set is used and ~ CHs | 2e 114
the van der Waals parameters are taken from the CHARMM 'C\‘:E“O, :ggc.s, —7re -8l :gg'ii
force fields. All calculations are carried out at the LDA level CHzCN* —75 —76.91
of theory®® (unless otherwise specified), and the supercell in CHsS™ -76° —81.42
3D-FFT is taken to have 64 64 x 64 nodes (or 64x 64 x PH,* —73 —57.96

128 for glycine). _ ] aReference 47° Reference 48 Reference 49 Reference 50.
3.1. Free Energies for Small MoleculesThe calculation of e Reference 511 Reference 52.

the free energies of solvatiohGs,, were carried out for the

representative set of small molecules in aqueous solution (TablegABéE 363 Free E_l_nergi;as (kctallmO_I) {ﬁr %nlinhe 4T

1) and compared to the free cnergies calciated by other QRS Oxepe Transiomatons n the Gas Piase and Two
methods. The results are summarized in Table 2. We can see -

from these data that the predictions of the KS-DFT/3D-RISM- Isooctane HO/MeOH

KH combination are in good agreement with the results of the gasphase RISM COSMO RISM COSMO
other methods. A noticeable overestimation of the hydration penzene oxyde —3.150 —2.911 —2.905 —2.908 —2.902
free energy is observed only for strongly charged ions. It can transition state —3.143 —2.903 —2.898 —2.899 —2.896
be attributed to the necessity to self-consistently adjust the van oxepine —3.147 2912 -2905 -2.910 -2.904
der Waals parameters in the case of charged molecules and als@'anar —3.138 —2.903 -—2.898 -2.900 -2.896
to the imperfectness of the closure relation. The latter has aResults of the KS-DFT-LDA/3D-RISM-KH Theory versus DFT/
considerable space for improvement, for example, by introducing COSMO3*®

the modification to the KH closure similarly to Omelyan ef-l.

3.2. Benzene Oxide Valence TautomerismThe next geometry optimization in solution is required for the zwitterionic
example is the study of the transition state for the interconversion form of glycine because this structure does not exist in the gas
(valence tautomerization) of benzene oxide and oxepin in (i) phase. There are several theoretical investigations on environ-
isooctane and (i) 15% aqueous methanol solvents. We chosement effects on the molecular structure of glycifé344
these solvents to further emphasize the ability of the KS-DFT/ | this study, the calculations were performed for the three
3D-RISM-KH method to readily treat arbitrary molecular o tra| conformers 1, 2, and 3 as well as a zwitterionic (ZW)

SO:Ven; mlxturest. For_theé(e);ﬁgmsﬁ_lt;]s .d'f‘;'ﬁ.“" even tr? define one (Figure 1). The geometrical parameters and its comparison
solvent parameters in which in this casé have no .y, experiment are presented in Tables 4 and 5.

physical meaning because of the complex geonf@tifhe i
geometry structure of the solute species can be found in ref 39. 1Ne neutral conformers have been experimentally character-

Table 3 gives presents predictions for these systems which ardZed in the gas phase through the microwave or IR spectroscopy.
in good agreement with the results of the DFT/COSMO They differin the orientation of the €N and O-H bonds with
calculations® respect to the €0 bond and correspondingly in the number
3.3. Glycine Structure in Water Solution. A classical ~ and type of hydrogen-bonded interactions. Conformer 1 pos-
example of geometry optimization in solvent is the study of Sesses an internal hydrogen bond between the hydroxyl hydro-
the hydration effects on the structure and relative stability of gen and the nitrogen lone pair and has the largest dipole
glycine. It is the simplest amino acid with the smallest moment. This form is stable only in gas phase and relaxes into
hydrocarbon backbone and is a very instructive biochemical zwitterionic form when the structure is optimized in solution.
model compound. The importance of this example is that the Zwitterionic (ZW) glycine, the most stable tautomer in water,
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Figure 1. Glycine conformers.

TABLE 4: Geometrical Parameters (Distances in A and
Angles in Degrees) for the Neutral (1) Form of Glycine in
Gas and in Aqueous Solution

water
coord. LDA gasGGA  expt. LDA GGA
Ci—0, 1.207 1.214 1.205 1.214 1.223
Ci—0s 1.342 1.365 1.355 1.329 1.355
Ci—Cy 1.495 1.518 1.526 1.492 1.519
Ns—C4 1.428 1451 1.467 1.430 1.455
O3—Hs 0.992 0.990 0.966 0.996 0.993
Cs—Hy 1.107 1.102 1.081 1.108 1.103
Ns—Hg 1.029 1.027 1.001 1.030 1.028
0;—C,—0, 12344 123.35 123.67 123.56
C,—C,—0, 12481 125.49 125.1 124.52 125.40
Ns—C,—C;  115.39 115.85 112.1 115.74  116.07
He—Os—C;i  105.47 105.31 108.20 107.77
H;—C4,—C; 107.64 107.68 107.14 107.26
Hi0—Ns—C, 109.70 109.16 109.89  109.37
DCH 123.90 123.38 124.02  123.42
DH 57.60 57.09 57.84 57.46

a Reference 52.

TABLE 5: Geometrical Parameters (Distances in A and
Angles in Degrees) for ZW Conformer in Aqueous Solution

coord. LDA GGA expt
Ci—0, 1.243 1.258 1.250
C1—0Os 1.262 1.268 1.251
C—C 1.523 1.547 1.526
Ns—C4 1.462 1.494 1.476
He—Ns 1.076 1.055
H;—C4 1.102 1.097
Ho—Ns 1.033 1.030
0;—C1—0; 128.49 128.67
C,—C,—0; 117.02 115.52 117.1
Ns—Cs—C; 108.04 109.61 111.9
He—Ns—C4 100.06 103.08
H,—Cs,—C; 110.05 110.23
Ho—Ns—C4 114.03 113.65
D1 59.68 60.16
D2 117.60 117.89

a Reference 53.

Gusarov et al.

TABLE 6: Solvation Free Energy AGs,y (kcal/mol) and
Dipole Moments u (Debye) of Glycine, Following from the
KS-DFT/3D-RISM-KH Theory

AGsoly ugas u water
LDA GGA LDA GGA LDA GGA
| 5.98 5.71
1 —10.86 —11.44 1.21 1.12 1.96 1.82
11 —-1454 —-16.89 1.85 1.78 2.99 2.89
ZW —41.54 —43.03 13.07 12.42

solvent has little effect on the structure of the neutral forms but
significantly affects the zwitterionic form. The results &gy
obtained by KS-DFT/3D-RISM-KH agree very well with the
previous calculation®’

The 3D distribution functions calculated from the 3D-RISM-
KH theory yields the hydration structure of glycine in aqueous
solution in three-dimensional detail. Figure 3 shows the 3D
distributions of water oxygen and hydrogen in the first hydration
shell around the carboxylate group of glycine. Clearly seen is
the hydrogen bonding of water molecules to the carboxylate
oxygens of glycine (large blue segments surrounding the two
oxygens). The corresponding positions of water oxygen can be
determined by the analysis of 3D distribution functions (Figures
2 and 3). Our estimation (outer part of the red shell) agree well
with the existing data for a wateglycine cluster obtained in
molecular simulations (with force fields adjusted for aqueous
solution)#® As distinct from carboxylate, water molecules around
the nitrogen group of glycine are oriented with their hydrogens
outward the nitrogen group of glycine (blue segment in the lower
part of Figure 3 and blue bands behind the red cloud).

3.4. Timings.To illustrate the efficiency of our implementa-
tion, we present the timings comparison for single-point ADF
calculations of (6,6) carbon nanotubes of different sizes with
the KS-DFT-LDA/3D-RISM-KH and KS-DFT-LDA/COSMO
solvation models. To properly assess the convergence rate for
different tube lengths, we use a CPU time per one iteration of
the self-consistent potential loop. This includes the calculation
and diagonalization of the Fock matrix and the evaluation of
solvent effect (either the by the 3D-RISM-KH or COSMO).
This presentation per self-consistent potential loop is convenient
to compare performance of calculation for gas and liquid phases
which converge in different numbers of iteration. These numbers
for the 3D-RISM-KH and COSMO solvation schemes appear
to be rather similar but strongly dependent from the size,
electronic configuration, starting guess, etc.

The rest of the CPU time which is spent for evaluation of
the solvent effects can be easily estimated using of gas-phase
timings also presented in Figure 4. It can be subdivided into
the time for solving the equations of the of solvation model
and that for calculating the matrix elements of the solvation
potential. The latter is comparably small and similar for the
3D-RISM-KH and COSMO cases. The time for solving the 3D-
RISM integral equations scals mainly as the 3D discrete Fourier
transform inO(N log,N) operations with the number of 3D grid
pointsN. Therefore, for a system big enough (about 200
atoms) we expect that the computational efforts for solving the

has a large gas-phase dipole moment and charge separatiofinear systeniq= B with large arrays andB in the COSMO
along the molecular framework that leads to strong interactions method® become higher than for solving the 3D-RISM-KH

with water.

equations. This crossover is clearly seen in Figure 4. Overall,

Table 6 lists the free energies of solvation for the four the timing efficiency of the KS-DFT/3D-RISM-KH strongly
conformers of glycine and their total dipole moments in the depends on the 3D grid size to accommodate the given solute.
gas phase and aqueous solution. Geometry optimization of thelt is slower than KS-DFT/COSMO for small molecules, but
neutral and zwitterionic forms of glycine in water shows that quickly becomes much more efficient for large macromolecules.
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Figure 2. Sections of the 3D distribution functions between glycine and the oxygen (solid lines) and hydrogen (dashed lines) sites of water solvent
molecule (a) along €0 axis; (b) along € C axis; (c) along GO axis (see Figure 1).

analytical expression for the solvation free energy and the 3D
solvent distribution functions which are most naturally and
effectively obtained from the 3D-RISM-KH theory.

Test results for a number of simple molecules and organic
compounds are presented in order to show the correctness and
accuracy of the KS-DFT/3D-RISM-KH method. It enables
efficient treatment of transition state structures and mechanisms
of chemical reactions for large nanosystems in solution, with
the solvation effects accounted from the first principles. Among
other features, the approach also yields IR spectra of nanosys-
tems with molecular solvation effects included (to be considered
in detail in subsequent studies). The preliminary benchmarks
we obtained show that for nanosystems larger than-280
atoms the presented method becomes more efficient than
continuum solvation approaches in both time and memory
resources.
s00 | ' ' ' ] We emphasize that as distinct from any continuum solvation

scheme, the KS-DFT/3D-RISM-KH method yields the solvation
shell structure and thermodynamics from the first principles.
400 1 This is achieved with the accuracy comparable to KS-DFT/MD
type approaches but with much smaller computational efforts.

Figure 3. First hydration shell around the carboxylate group of ZW
glycine in water: oxygen (red) and hydrogen (blue).
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