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The three-dimensional reference interaction site model with the closure relation by Kovalenko and Hirata
(3D-RISM-KH) in combination with the density functional theory (DFT) method has been implemented in
the Amsterdam density functional (ADF) software package. The analytical first derivatives of the free energy
with respect to displacements of the solute nuclear coordinates have also been developed. This enables study
of chemical reactions, including reaction coordinates and transition state search, with the molecular solvation
described from the first principles. The method yields all of the features available by using other solvation
approaches, for instance infrared spectra of solvated molecules. To evaluate the accuracy of the present method,
test calculations have been carried out for a number of small molecules, including four glycine conformers,
a set of small organic compounds, and carbon nanotubes of various lengths in aqueous solution. Our predictions
for the solvation free energy agree well with other approaches as well as experiment. This new development
makes it possible to calculate at modest computational cost the electronic properties and molecular solvation
structure of a solute molecule in a given molecular liquid or mixture from the first principles.

1. Introduction

The importance of solvation in chemical and biological
processes can hardly be overestimated. Solvent effects on the
structure and functionality of solutes are not only important for
understanding the mechanisms of many organic and biochemical
reactions but also crucial for molecular drug design. Progress
in computer hardware and electronic structure methods has
stimulated the development of solvent models. Advancements
in this direction has been especially impressive over the past
few years. Many efforts have been devoted to incorporate
solvent effects into quantum chemical approaches in order to
accurately model chemical reactions in liquids. The Kohn-
Sham density functional theory (KS-DFT)1,2 has become a
widely used model for electronic structure calculations due to
its simplicity and low computational cost. Recent improvements
of the exchange-correlation functionals based on the generalized
gradient approximation (GGA) makes it possible to treat the
solute electrons sufficiently accurately. In combination with
solvent models, DFT allows one to calculate the potential energy
surface (PES) for molecular systems and thus to study chemical
reactions.

Methods for including solvent effects are typically subdivided
into two types: explicit and continuum solvent models. Explicit
(or discrete) methods3,4 treat a large number of solvent molecules
together with the solute, generally at the same or comparable
level of accuracy. This approach is in principle the most realistic
and accurate model for studying the physical chemistry of
solvation, whether the solutes are simple organic molecules or

complex biomolecules. However, the main disadvantage of
discrete models is that adequate description of solution requires
a significant number of solvent molecules. This results in high
computational cost and slow convergence. An alternative
approach is based on continuum self-consistent reaction field
models.5-11 Here the solvent is represented not by a collection
of molecules but rather by a structureless continuous medium
with the average properties of the real solvent. A central quantity
is the “reaction field”, i.e., the electrostatic influence of the
solvent on the electronic energy, structure, and properties of
the solute molecule. These methods are significantly less
expensive computationally than explicit solvent treatments, but
such simplified models of solvent are often insufficient to
properly represent the specific interactions between the solute
and solvent molecules.

Because of the above difficulties, there is significant interest
in developing more rapid and accurate hybrid methods. One
solution is to make use of the supermolecular approach12,13 in
which the solvated system is modeled by a cluster of the solute
and a representative small number of explicit solvent molecules.
This “supermolecule” is immersed in a continuous dielectric
medium characterized by the macroscopic dielectric constant
of the solvent.

Another, theoretically consistent way to introduce a micro-
scopic description of solvation effects involves combination of
quantum chemical methods with statistical mechanical theory
of molecular solvation based on density distribution functions.
One promising approach in this direction is the reference
interaction site model (RISM) which yields the radial pair
correlation functions between atomic sites constituting the
molecules of liquid. It had been pioneered by Chandler and
Andersen14 and extended by Hirata et al. to polar and quadru-
polar liquids15 and to ions in a molecular polar solvent.16
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The first hybrid of the RISM integral equation theory with
electron structure theory is due to Tenno, Hirata, and Kato.17

They combined the ab initio Hartree-Fock scheme with RISM
in a self-consistent field approach referred to as RISM-SCF.
This method makes it possible to determine in a self-consistent
manner the effect of organic as well as aqueous solvents on the
electronic structure of a variety of solute molecules. In addition,
Sato et al18 formulated an analytical energy gradient method
for hybrid MCSCF-RISM calculations and applied it to the
study of the cis-trans conformational equilibrium of 1,2-
difluoroethylene in aqueous solution.

Because RISM is based on the orientational reduction to site-
site solute-solvent radially symmetric correlation functions,
there is a loss of information about the three-dimensional (3D)
spatial organization (structure) of the solvent density around a
macromolecular solute of complex shape.19 Besides the con-
vergence problems, this makes the conventional site-site RISM
difficult to use in combination with the KS-DFT scheme which
requires spatial density profiles rather than radial site-site
distribution functions. To circumvent this limitation, a gener-
alization of RISM theory to three-dimensional space (3D-RISM)
has been proposed which yields the 3D correlations of molecular
sites for solvent molecules around a solute of arbitrary shape.20-24

Thus, the 3D-RISM-KH approach is best suited and has been
coupled with the KS-DFT in a self-consistent field description
of the electronic structure of solvated macromolecules and
interfaces.22,24

In this paper, we present the implementation of the 3D-RISM
method in the Amsterdam density functional (ADF) program.25

This self-consistent KS-DFT/3D-RISM-KH method includes
also calculation of analytical energy gradients. The accuracy
of the method is illustrated on a set of examples.

2. Theory

2.1. Kohn-Sham DFT in the Presence of Solvent.The
electronic structure of the solute is calculated from the self-
consistent KS-DFT equations modified to include the presence
of solvent. The total system of the solute and solvent has the
Helmholtz free energy defined as

whereEsoluteis the electronic energy of the solute consisting of
the standard components,9 ∆µsolv is the excess chemical potential
of solvation coming from the solute-solvent interaction and
solvent reorganization due to the presence of the solute,ne(r )
is the electron density distribution, andFγ(r ) is the classical
density distributions of interaction sitesγ ) 1, ...,sof the solvent
molecule. The solute energy is determined by the standard KS-
DFT expression written in atomic units as

whereTs[ne(r )] is the kinetic energy of a noninteracting electron
gas in its ground state with density distributionne(r ), Exc[ne(r )]
is the exchange-correlation energy, andVi(r ) comprises the
external potential and the nuclear attractive potential.

From the minimization of the free-energy functional (1)

subject to the normalization condition forNe valence electrons

of solute

we obtain the self-consistent KS equation modified due to the
presence of solvent22,24

where the Hartree potential is

the electron density distribution is determined by summation
over theNe lowest occupied eigenstates with allowance for their
double occupancy by electrons with opposed spins

the exchange-correlation potential is the functional derivative

and the solvent potential is defined as

To simplify the calculation ofVH(r ) in ADF, we use the fitted
density

which after substitution in eq 6 yields the fitted potential. Here
fa is the set of the single-center Slater functions and the
coefficients ca are determined by least-squares fitting.26,27

Together with using the locality properties,28 this allows one to
dramatically reduce the amount of calculations necessary for
evaluation of the potentials and matrix elements.

The total free energy is calculated as

2.2. Three-Dimensional RISM Theory.The classical density
distributions of molecular solvent around a solute of arbitrary
shape are obtained by using the 3D-RISM integral equations.
These equations can be derived from the six-dimensional,
molecular Ornstein-Zernike (OZ) equation 28 for the solute-
solvent correlation functions by averaging out their dependence
on the orientation of solvent molecules but holding the solute
orientation intact.22,24 It has the form

wherehR(r) andcR(r) are respectively the 3D site total and direct

A[ne(r ),{Fγ(r )}] ) Esolute[ne(r )] + ∆µsolv[ne(r ),{Fγ(r )}] (1)

Esolute[ne(r )] ) Ts[ne(r )] +

∫ dr ne(r )Vi(r ) + r
dr ′

ne(r )ne(r ′)
|r - r ′| + Exc[ne(r )] (2)

δA[ne(r ),{Fγ(r )}]

δne(r )
) 0 (3)

∫ dr ne(r ) ) Ne (4)

[-1
2

∆ + Vi(r ) + Vh(r ) + Vxc(r ) + Vsolv(r )]ψj(r ) ) εjψj(r ) (5)

Vh(r ) ) ∫ dr ′
ne(r ′)

|r - r ′| (6)

ne(r ) ) ∑
j)1

Ne

|ψj(r )|2 (7)

Vxc(r ) )
δExc[ne(r )]

δne(r )
(8)

Vsolv(r ) )
δ∆µsolv[ne(r ),{Fγ(r )}]

δne(r )
(9)

ne(r ) ≈ ∑
j)1

Ne

ca fa(r ) (10)

Atot ) ∑
j)1

Ne

εj -
1

2
∫ dr dr ′

ne(r )ne(r ′)

|r - r ′|
+ Exc[ne(r )] -

∫ dr Vxc(r ) ne(r ) + ∆µsolv[ne(r ),{Fγ(r )}] -

∫ dr Vsolv(r ) ne(r ) (11)

hγ(r ) ) cR(r )*(ωRγ(r ) + FR hRγ(r )) (12)
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correlation functions of solvent siteR around the solute,ωRγ-
(r) ) δ(r - lRγ)/(4πlRγ

2) is the intramolecular matrix of a solvent
molecule with site separationslRγ, FR is the number density of
solvent siteR, and “*” corresponds to convolution in the direct
space and summation over repeating site indices. The site-site
radial correlation functions of bulk water,hRγ(r ), are obtained
from the dielectrically consistent RISM theory (DRISM)
developed by Perkyns and Pettitt30 which provides a consistent
description of the dielectric properties for ions in polar solvent.
Used as input to the 3D-RISM, eq 12 yields the dielectric
properties of polar solvent around a solute of general shape at
least at the level of a macroscopic dielectric constant.23,24 The
3D site correlation functions are specified on a 3D linear grid
in a rectangular supercell, and the convolution in eq 12 is
handled by using the 3D fast Fourier transform (3D-FFT)
technique. For a (macro)molecular solute, the box size has to
be large enough to ensure decay of the short-range part of the
3D site correlation functions at the supercell boundaries, whereas
the long range electrostatic part of the correlations is separated
out and handled analytically.23,24

The solute-solvent 3D-RISM eq 12 must be complemented
with a closure relating the site-site total and direct correlation
functions. The approximations which appeared to be successful
and adequate for the description of the structure and thermo-
dynamics of various solutes in polar liquids32 are built in analogy
with the closures in theory of simple liquids.29 The 3D analogue
of the so-called hypernetted chain (HNC) closure to the 3D-
RISM eq 12 is constructed by assuming

whereuγ(r ) is the 3D interaction potential between solvent site
R and the whole solute,â ) 1/kBT is the inverse temperature
with the Boltzmann constantkâ, andgγ(r ) ) hγ(r ) + 1 is the
3D site distribution function of solvent siteR around the solute.
Beglov and Roux20 have obtained the 3D-RISM/HNC equations,
eqs 12 and 13, within the density functional method by reduction
of the generalized closure of Chandler, McCoy, and Singer for
nonuniform polyatomic systems.33 In the case of a very deep
well of the attractive potential between the solute and individual
solvent sites, the 3D-HNC closure (13) can become diver-
gent.22,34 This artifact is absent in the partial linearization of
the HNC closure proposed by Kovalenko and Hirata22,24 (KH
approximation)

Equation 14 combines the exponential HNC approximation for
the regions of depletion of the distribution function,gγ(r ) < 1,
the mean spherical approximation (MSA) for the regions of
enrichment,gγ(r ) > 1, with the function and its first derivative
continuous at the joint pointX(r ) ) 0. The 3D-KH approxima-
tion (14) enforces proper long-range asymptotics of the direct
correlation functioncγ(r ) in the same way as in the original
HNC and MSA closures. The MSA-type linearization prevents
the artifact of the distribution function diverging in the regions
with a large potential. This partial linearization somewhat
reduces and widens high peaks of the distribution functions,
whereas it much less affects the coordination numbers of the
solvation shells.

The 3D-HNC approximation (13) leads to the excess chemical
potential of solvation in the closed analytical form22,24

equivalent to that derived by Singer and Chandler for the site-
site RISM/HNC equations.35 For the 3D-KH closure (14), the
analytical expression is somewhat different22,24

whereΘ in the Heaviside step function which puts the termh2

in effect in the regions of density depletion only.
Special considerations are required in order to apply the 3D-

RISM approach to the case of nonzero net charge of the solute.
Within the supercell technique, the Coulomb part of the
interaction potentialu(r ) is synthesized on the super-cell grid
by the Ewald summation method.36 This distorts the long-range
Coulomb asymptotics of the direct correlation functionc(r ).
Furthermore, the background compensating charge of the
supercell brings about a constant shift in the total correlation
function h(r ) which departs from unity at a distance from the
solute. The resulting error in the solvation chemical potential
calculated from expressions (15) or (16) can amount to several
tens of kcal/mol. To eliminate these artifacts of the supercell
technique, Kovalenko and Hirata23,24 developed analytical
corrections which restore the proper nonperiodic asymptotics
of the 3D site total and direct correlation functions following
from the 3D-RISM integral equations and cancel out the error
in the solvation chemical potential for ions and ion pairs with
an accuracy of about 0.1 kcal/mol.

2.3. Effective Potentials and Analytical Gradients.The
classical effective potential energy of the solute acting on solvent
site γR is broken up into the short-range interactionuγ

(sr)(r )
between the solvent site and the whole solute and the electro-
static energy of the solvent site effective chargeq in the fields
of the solute nucleiφ(n)(r ) ) ∑i Zi/|r - Ri| and electronsφ(e)(r )

This short-range part is represented by the sum of the 12-6
Lennard-Jones potentials over the solute sites

wherer i ) |r - Ri| is the separation between the solute nucleus
i and solvent siteγ and σiγ and εiγ are the LJ diameter and
energy parameters. The potential of valence electrons acting
on a single solvent site,φγ

(e)(r ), is calculated in the density
fitting procedure.25

The effective potential of solvent acting on the solute
electrons,Vsolv(r ), is the functional derivative of the excess
chemical potential of solvation with respect to the electron
density distribution of the solute (9). In both the 3D-HNC and
3D-KH forms of the excess chemical potential, eqs 15 and 16,
this leads to the expression22,24

gγ(r ) ) exp(-âuγ(r ) + hγ(r ) - cγ(r )) (13)

g γ(r ) ) {exp (øγ(r )) for øγ(r ) e 0
1 + for øγ(r ) for øγ(r ) > 0} (14)

øγ(r ) ) -âuγ(r ) + hγ(r ) - cγ(r )

∆µHNC ) FkT∑
γ
∫ dr [12(hγ(r ))2 - cγ(r ) -

1

2
(hγ(r ) cγ(r )]

(15)

∆µKH ) FkT∑
γ
∫ dr [12(hγ(r ))2Θ(-hγ(r )) -

cγ(r ) -
1

2
(hγ(r ) cγ(r )] (16)

uγ(r ) ) uγ
(sr)(r ) + qγ(φ

(n)(r ) + φ
(e)(r )) (17)

uγ
(sr)(r ) ) ∑

i

4εiγ[(σiγ

r i
)12

- (σiγ

r i
)6] (18)

Vsolv(r ) )
δ∆µsolv

δne(r )
) F∑

γ
∫ dr ′ hγ(r ) Vγ

ps(|r - r ′|) (19)
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where Vγ
ps(|r - r ′|) is the contribution of siteγ into the

pseudopotential of a solvent molecule acting on an external
electron which is given by the variational derivative of the
classical site potential with respect to the valence electron
density22

Notice that the potential (19) signifies the mean field ap-
proximation which follows essentially from the use of the
solvation free energy in the form (15) or (16).

The analytical first derivative with respect to the nuclear
coordinatesRi is obtained by differentiation of the free energy
expression (1)

where the former term has the same structure as in the case gas
phase. The latter term is derived from the excess chemical
potential in the form (15) or (16). Its variation can be written
as22,24

Similar to Kovalenko and Hirata,22,24 we have the following
variation of the classical potential between the solute and solvent
site γ:

Substituting eq 23 into eq 22 and usingnN(r ) ) ∑j qjδ(r - Rj)
gives the solvation contribution to the free energy gradients

TABLE 1: Free Energies (kcal/mol) Predicted by the KS-DFT/3D-RISM-KH Theory for a Set of Small Molecules in Aqueous
Solution

∆G ∆G ∆G

LDA GGA LDA GGA LDA GGA

Diatomic
N2 2.29 2.46 Cl2 1.17 1.22 CO 2.34 2.40
HCl -0.63 -0.49 O2(1Σ) 1.07 1.14 F2 1.94 2.02
HF -3.98 -3.91 FCl 1.83 1.91 O2(1Π) 1.01 1.23
OH- -116.65 -117.32 SH- -79.11 -77.86 CS 0.77 0.84
CN- -78.22 -76.15 NO+ -53.67 -51.02 OCl- -83.90 -82.11

Triatomic
HCN -2.14 -2.03 CS2 2.98 3.11 H2O -6.14 -6.08
FNO -0.98 -0.89 CO2 1.51 1.68 N2O 2.04 2.15
O3 3.32 3.41 ClNO 0.65 0.77 SO2 0.68 0.77
FCN -0.01 0.14 ClCN -1.55 -1.46 ClNS -1.15 -1.02
NO2

- -74.99 -74.15 COS 2.95 3.07 H2S -1.10 -1.12
HCC- -78.76 -78.52 PH2

- -82.58 -82.03 NO2
+ -51.88 -51.23

N3
- -72.44 -71.12 NH2

- -112.31 -110.45 HOO- -98.75 -97.06

Tetratomic
HCCH -0.56 -0.40 CH3

- -89.38 -88.12 NCl3 3.54 3.67
FOOFt 2.41 2.56 HCNO -1.20 -1.10 NH3 -3.99 -3.84
PCl3 2.19 2.45 HOOHg -7.72 -7.34 HCCF 2.36 2.45
PF3 1.38 1.53 HCHO -2.12 -2.02 FOOFg 1.24 1.41
HCCCl 0.39 0.49 NF3 3.16 3.24 SOF2 0.82 0.97
HOCN -11.84 -11.09 COCl2 2.08 2.31 PH3 -0.14 0.12
COF2 2.28 2.41 HNCO -1.80 -1.56 HOOHt -8.48 -8.21
CO3

2 - -210.61 -211.04 HCOO- -79.53 -78.25 CH3
+ -56.10 -56.03

NO3
- -69.65 -68.42 H3S+ -59.53 -59.44 H3O+ -85.25 -85.01

Pentatomic
CH4 1.14 1.28 POF3 1.75 1.91 CH2FCl -5.56 -5.21
H2CNH -3.83 -3.64 CHF3 1.03 1.25 PSF3 3.57 3.63
CH2N2 0.96 1.02 HCOOHs -3.84 -3.69 CF4 3.19 3.25
NOF3 3.28 3.39 CH2CO 1.16 1.27 HCOOHa -9.71 -9.45
CHF2Cl -2.19 -1.67 CH3Cl 1.96 2.17 CH2F2 2.06 2.48
PSCl3 2.06 2.34 CH3Br 8.49 8.55 CF3Cl 3.49 3.88
SO2F2 3.04 3.31 CH2Br2 8.35 8.66 CCl4 2.83 2.99
CHCl3 2.65 2.81 CH2Cl2 -2.72 -2.34 CH3F -0.07 0.64
SO2Cl2 2.84 3.05 CFCl3 1.87 2.02 CF2Cl2 3.52 3.77
CH3O- -86.44 -85.14 HPO3

-s -9.86 -9.54 POCl3 -0.95 -0.62
HPO3

-e -9.95 -9.03 CH2CN- -76.91 -75.74 NH4
+ -68.32 -68.04

HCO3
-s -79.76 -77.95 HCO3

-e -77.0 -75.12 PH4
+ -57.96 -57.11

CH3S- -81.42 -82.12 ClO4
- -63.97 -63.11 H2COH+ -58.47 -57.10

Vγ
ps(|r - r ′|) )

δuγ(r )

δn(e)(r ′)
(20)

dA[ne(r ),{Fγ(r )}]

dRi
)

dEsolute[ne(r )]

dRi
+

d (∆µsolv[ne(r ),{Fγ(r )}])

dRi
(21)

δ∆µsolv) kTFV∑
γ
∫ dr [hγ(r )δhγ(r )Θ(-hγ(r )) -

δcγ(r ) -
1

2
δ(hγ(r )cγ(r ))]

) FV∑
γ
∫ dr gγ(r ) δuγ(r ) (22)

δuγ(r ) ) ∫ dr ′ [( δuγ(r )

δn(e)(r ′))δn(e)(r ′) + ( δuγ(r )

δnN(r ′))δnN(r ′)]
) ∫ dr ′ Vγ

ps(|r - r ′|)[δnN(r ′) + δn(e)(r ′)] (23)

d(∆µsolv)

dRi
) ∫ dr [FVgγ(r )

∂uγ
(sr)(r )

∂Ri
+ Vsolv(r )

∂n(e)

∂Ri
] +

qi

∂Vsolv(r )

∂r

||| r)Ri
(24)

6086 J. Phys. Chem. A, Vol. 110, No. 18, 2006 Gusarov et al.



Calculation of the expression (24) does not require much
computational effort. The second term in the square brackets is
calculated together with the gradients of the exchange-correla-
tion potential,37 and the rest is calculated in the 3D-RISM
procedure. Notice that the first term in the square brackets
contributes little to the gradients because large values of the
derivatives of the short-range potentialuγ

(sr)(r ) around the core
are suppressed by the distribution functiongγ(r ) exponentially
decaying in that region.

We emphasize that the formula (24) differs from the analytical
free energy derivative following from the 1D-RISM scheme18

by the absence of the term representing the change in the
solute-solvent correlations with the intramolecular distribution
functions (intermolecular matrix).

Notice that the 3D-RISM-KH solvation method can be
similarly combined in a self-consistent field approach with any
multireference electronic structure theory. Sato et al.18 pioneered
such a combination of 3D-RISM-KH and ab initio CASSCF
method.

3. Applications

To illustrate the capability of our combination of the 3D-
RISM-KH theory with KS-DFT, we present here preliminary
results of the benchmark calculations for a set of simple
molecules and organic compounds, taken primarily from ref 39.
For the results presented below, the DZP basis set is used and
the van der Waals parameters are taken from the CHARMM
force fields. All calculations are carried out at the LDA level
of theory40 (unless otherwise specified), and the supercell in
3D-FFT is taken to have 64× 64 × 64 nodes (or 64× 64 ×
128 for glycine).

3.1. Free Energies for Small Molecules.The calculation of
the free energies of solvation∆Gsolv were carried out for the
representative set of small molecules in aqueous solution (Table
1) and compared to the free energies calculated by other
methods. The results are summarized in Table 2. We can see
from these data that the predictions of the KS-DFT/3D-RISM-
KH combination are in good agreement with the results of the
other methods. A noticeable overestimation of the hydration
free energy is observed only for strongly charged ions. It can
be attributed to the necessity to self-consistently adjust the van
der Waals parameters in the case of charged molecules and also
to the imperfectness of the closure relation. The latter has
considerable space for improvement, for example, by introducing
the modification to the KH closure similarly to Omelyan et al.41

3.2. Benzene Oxide Valence Tautomerism.The next
example is the study of the transition state for the interconversion
(valence tautomerization) of benzene oxide and oxepin in (i)
isooctane and (ii) 15% aqueous methanol solvents. We chose
these solvents to further emphasize the ability of the KS-DFT/
3D-RISM-KH method to readily treat arbitrary molecular
solvent mixtures. For these systems, it is difficult even to define
solvent parameters in COSMO which in this case have no
physical meaning because of the complex geometry.42 The
geometry structure of the solute species can be found in ref 39.
Table 3 gives presents predictions for these systems which are
in good agreement with the results of the DFT/COSMO
calculations.39

3.3. Glycine Structure in Water Solution. A classical
example of geometry optimization in solvent is the study of
the hydration effects on the structure and relative stability of
glycine. It is the simplest amino acid with the smallest
hydrocarbon backbone and is a very instructive biochemical
model compound. The importance of this example is that the

geometry optimization in solution is required for the zwitterionic
form of glycine because this structure does not exist in the gas
phase. There are several theoretical investigations on environ-
ment effects on the molecular structure of glycine.39,43,44

In this study, the calculations were performed for the three
neutral conformers 1, 2, and 3 as well as a zwitterionic (ZW)
one (Figure 1). The geometrical parameters and its comparison
with experiment are presented in Tables 4 and 5.

The neutral conformers have been experimentally character-
ized in the gas phase through the microwave or IR spectroscopy.
They differ in the orientation of the C-N and O-H bonds with
respect to the CdO bond and correspondingly in the number
and type of hydrogen-bonded interactions. Conformer 1 pos-
sesses an internal hydrogen bond between the hydroxyl hydro-
gen and the nitrogen lone pair and has the largest dipole
moment. This form is stable only in gas phase and relaxes into
zwitterionic form when the structure is optimized in solution.
Zwitterionic (ZW) glycine, the most stable tautomer in water,

TABLE 2: Solvation Free Energy (kcal/mol) Predicted by
the KS-DFT-LDA/3D-RISM-KH Theory vs Experiment

obj. ∆Gexpt ∆G

Diatomic
N2 2.3a 2.29
CO 2.2a 2.34
HF -5.6b -3.98
HCl -1.2b -0.63
OH- -110c -116.65
CN- -75c -78.22
SH- -76c -79.11

Triatomic
H2O -6.3,d -4.4b -6.14
HCN -3.2c -2.14
HCC- -73c -78.76
HO2

- -101c -98.75
NH2

- -95c -112.31
NO2

- -73c -74.99
N3

- -74c -72.44
PH2

- -67c -82.58

Tetratomic
NH3 -4,b -4.3e -3.99
HOOHg -8.7a -7.72
HCCH 0.0a -0.56
HCHO -1.7a -2.12
H3O+ -104,f -102,b -105c -85.25
NO3

- -66c -69.65

Pentatomic
CH4 2.0a 1.14
NH4

+ -80.5,f -77,b -81c -68.32
CH3O- -98c -86.44
CH2CN- -75c -76.91
CH3S- -76c -81.42
PH4

+ -73c -57.96

a Reference 47.b Reference 48.c Reference 49.d Reference 50.
e Reference 51.f Reference 52.

TABLE 3: Free Energies (kcal/mol) for Benzene
Oxyde-Oxepine Transformations in the Gas Phase and Two
Solvents: Isooctane and 15% Water-Methanol Mixture a

isooctane H2O/MeOH

gas phase RISM COSMO RISM COSMO

benzene oxyde -3.150 -2.911 -2.905 -2.908 -2.902
transition state -3.143 -2.903 -2.898 -2.899 -2.896
oxepine -3.147 -2.912 -2.905 -2.910 -2.904
planar -3.138 -2.903 -2.898 -2.900 -2.896

a Results of the KS-DFT-LDA/3D-RISM-KH Theory versus DFT/
COSMO.39
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has a large gas-phase dipole moment and charge separation
along the molecular framework that leads to strong interactions
with water.

Table 6 lists the free energies of solvation for the four
conformers of glycine and their total dipole moments in the
gas phase and aqueous solution. Geometry optimization of the
neutral and zwitterionic forms of glycine in water shows that

solvent has little effect on the structure of the neutral forms but
significantly affects the zwitterionic form. The results for∆Gsolv

obtained by KS-DFT/3D-RISM-KH agree very well with the
previous calculations.39

The 3D distribution functions calculated from the 3D-RISM-
KH theory yields the hydration structure of glycine in aqueous
solution in three-dimensional detail. Figure 3 shows the 3D
distributions of water oxygen and hydrogen in the first hydration
shell around the carboxylate group of glycine. Clearly seen is
the hydrogen bonding of water molecules to the carboxylate
oxygens of glycine (large blue segments surrounding the two
oxygens). The corresponding positions of water oxygen can be
determined by the analysis of 3D distribution functions (Figures
2 and 3). Our estimation (outer part of the red shell) agree well
with the existing data for a water-glycine cluster obtained in
molecular simulations (with force fields adjusted for aqueous
solution).45 As distinct from carboxylate, water molecules around
the nitrogen group of glycine are oriented with their hydrogens
outward the nitrogen group of glycine (blue segment in the lower
part of Figure 3 and blue bands behind the red cloud).

3.4. Timings.To illustrate the efficiency of our implementa-
tion, we present the timings comparison for single-point ADF
calculations of (6,6) carbon nanotubes of different sizes with
the KS-DFT-LDA/3D-RISM-KH and KS-DFT-LDA/COSMO
solvation models. To properly assess the convergence rate for
different tube lengths, we use a CPU time per one iteration of
the self-consistent potential loop. This includes the calculation
and diagonalization of the Fock matrix and the evaluation of
solvent effect (either the by the 3D-RISM-KH or COSMO).
This presentation per self-consistent potential loop is convenient
to compare performance of calculation for gas and liquid phases
which converge in different numbers of iteration. These numbers
for the 3D-RISM-KH and COSMO solvation schemes appear
to be rather similar but strongly dependent from the size,
electronic configuration, starting guess, etc.

The rest of the CPU time which is spent for evaluation of
the solvent effects can be easily estimated using of gas-phase
timings also presented in Figure 4. It can be subdivided into
the time for solving the equations of the of solvation model
and that for calculating the matrix elements of the solvation
potential. The latter is comparably small and similar for the
3D-RISM-KH and COSMO cases. The time for solving the 3D-
RISM integral equations scals mainly as the 3D discrete Fourier
transform inO(N log2N) operations with the number of 3D grid
pointsN. Therefore, for a system big enough (about 180-200
atoms) we expect that the computational efforts for solving the
linear systemAq ) B with large arraysA andB in the COSMO
method39 become higher than for solving the 3D-RISM-KH
equations. This crossover is clearly seen in Figure 4. Overall,
the timing efficiency of the KS-DFT/3D-RISM-KH strongly
depends on the 3D grid size to accommodate the given solute.
It is slower than KS-DFT/COSMO for small molecules, but
quickly becomes much more efficient for large macromolecules.

Figure 1. Glycine conformers.

TABLE 4: Geometrical Parameters (Distances in Å and
Angles in Degrees) for the Neutral (1) Form of Glycine in
Gas and in Aqueous Solution

water

coord. LDA gas GGA expt.a LDA GGA

C1-O2 1.207 1.214 1.205 1.214 1.223
C1-O3 1.342 1.365 1.355 1.329 1.355
C4-C1 1.495 1.518 1.526 1.492 1.519
N5-C4 1.428 1.451 1.467 1.430 1.455
O3-H6 0.992 0.990 0.966 0.996 0.993
C4-H7 1.107 1.102 1.081 1.108 1.103
N5-H9 1.029 1.027 1.001 1.030 1.028
O3-C1-O2 123.44 123.35 123.67 123.56
C4-C1-O2 124.81 125.49 125.1 124.52 125.40
N5-C4-C1 115.39 115.85 112.1 115.74 116.07
H6-O3-C1 105.47 105.31 108.20 107.77
H7-C4-C1 107.64 107.68 107.14 107.26
H10-N5-C4 109.70 109.16 109.89 109.37
DCH 123.90 123.38 124.02 123.42
DH 57.60 57.09 57.84 57.46

a Reference 52.

TABLE 5: Geometrical Parameters (Distances in Å and
Angles in Degrees) for ZW Conformer in Aqueous Solution

coord. LDA GGA expt.a

C1-O2 1.243 1.258 1.250
C1-O3 1.262 1.268 1.251
C4-C1 1.523 1.547 1.526
N5-C4 1.462 1.494 1.476
H6-N5 1.076 1.055
H7-C4 1.102 1.097
H9-N5 1.033 1.030
O3-C1-O2 128.49 128.67
C4-C1-O2 117.02 115.52 117.1
N5-C4-C1 108.04 109.61 111.9
H6-N5-C4 100.06 103.08
H7-C4-C1 110.05 110.23
H9-N5-C4 114.03 113.65
D1 59.68 60.16
D2 117.60 117.89

a Reference 53.

TABLE 6: Solvation Free Energy ∆GSolv (kcal/mol) and
Dipole Moments µ (Debye) of Glycine, Following from the
KS-DFT/3D-RISM-KH Theory

∆Gsolv µ gas µ water

LDA GGA LDA GGA LDA GGA

I 5.98 5.71
II -10.86 -11.44 1.21 1.12 1.96 1.82
III -14.54 -16.89 1.85 1.78 2.99 2.89
ZW -41.54 -43.03 13.07 12.42
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4. Conclusions

The implementation of the self-consistent KS-DFT/3D-RISM-
KH method and the related technique of analytical energy
gradients provides a powerful tool to study reaction dynamics
of large systems in molecular solvents and mixtures of an
arbitrary composition, including electrolyte solutions. (A similar
hybrid approach can be applied to any MCSCF/3D-RISM-KH
combination.) Calculation of analytical energy gradients requires
small additional computational load and is realized using the

analytical expression for the solvation free energy and the 3D
solvent distribution functions which are most naturally and
effectively obtained from the 3D-RISM-KH theory.

Test results for a number of simple molecules and organic
compounds are presented in order to show the correctness and
accuracy of the KS-DFT/3D-RISM-KH method. It enables
efficient treatment of transition state structures and mechanisms
of chemical reactions for large nanosystems in solution, with
the solvation effects accounted from the first principles. Among
other features, the approach also yields IR spectra of nanosys-
tems with molecular solvation effects included (to be considered
in detail in subsequent studies). The preliminary benchmarks
we obtained show that for nanosystems larger than 150-200
atoms the presented method becomes more efficient than
continuum solvation approaches in both time and memory
resources.

We emphasize that as distinct from any continuum solvation
scheme, the KS-DFT/3D-RISM-KH method yields the solvation
shell structure and thermodynamics from the first principles.
This is achieved with the accuracy comparable to KS-DFT/MD
type approaches but with much smaller computational efforts.
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